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Abstract� Uniprocessor designs have always assumed 

worst-case operating conditions to set the operating clock 
frequency, and hence performance. However, much more 
performance can be obtained under typical operating 
conditions through experimentation; but such increased 
frequency operation is subject to the possibility of system 
failure and hence data loss/corruption. Further, mobile CPU's 
such as those in cell phones/internet browsers do not adapt to 
their current surroundings (varying temperature conditions, 
etc.) so as to increase or decrease operating frequency to 
maximize performance and/or allow operation under extreme 
conditions. 

 We present a digital hardware design technique realizing 
adaptive clock-frequency performance-enhancing digital 
hardware; the technique can be tuned to approximate 
performance maximization. The cost is low, and the design is 
straightforward. Experiments are presented evaluating such a 
design in a pipelined uniprocessor realized in a Field 
Programmable Gate Array (FPGA). 
 

Index Terms� Adaptive clock design, computer design, 
microarchitecture, high-performance computing. 

I. INTRODUCTION AND BACKGROUND 

EVER since synchronous digital systems were first 
proposed, it has been necessary to make the operating 

frequency of a system much less than necessary in typical 
situations to ensure that the system operates correctly 
assuming worst case conditions, both operating and 
manufacturing. The basic clock period of the system is 
padded with a guard band of extra time to cover extreme 
conditions. There are three sources of time variation 
requiring the guard band. First, the manufacturing process 
has variations which can lead to devices having greater 
delay than the norm. Second, adverse operating conditions 
such as temperature and humidity extremes can lead to 
greater device delays. Lastly, one must allow for the data 
applied to the system to take the worst delay path through 
the logic. 

However, none of these extremes is likely to be present 

in typical operating conditions. The only known method to 
still obtain typical delays in all cases is to change the basic 
model to an asynchronous model of operation[3]. But this 
is undesirable: asynchronous systems are notoriously hard 
to design, and there are few automated design aids available 
for asynchronous systems. 

This paper proposes a Timing Error Avoidance technique 
(TEAtime) to realize typical delays using standard 
synchronous design methodologies. The extra cost is very 
small, while the performance gains are substantial. The 
technique is applicable to any synchronous digital system. 
Correct results are ensured if the design guidelines are 
followed. Neither the base cycle time or the cycle count are 
affected by TEAtime. It is also easy to modify current 
designs to take advantage of TEAtime. 

In order to demonstrate TEAtime�s capabilities and 
correct operation, we implemented a simple CPU and 
memory on a Xilinx FPGA (Field Programmable Gate 
Array) and ran it under various operating conditions. Over 
a wide range of temperatures TEAtime demonstrated 
performance improvements of about 34% over the baseline 
machine�s worst case specified performance. TEAtime 
adapted automatically to changing conditions, always 
stabilizing to a steady operating clock frequency. 

The remainder of this paper is organized as follows. 
Related work is reviewed in Section II. In Section III the 
basic ideas of timing error avoidance are presented, using 
our test CPU as a case study. Our experimental 
methodology is described in Section IV, with the 
experimental results presented in Section V. We conclude 
in Section VI.  

II. RELATED WORK 
There has been prior work somewhat similar to ours, but 

nothing that encompasses all of the attributes of our 
technique, not to mention actually demonstrating its 
functioning and characteristics with a real prototype. The 
closest work we are aware of is [10]. In this work a 
microcontroller has been modified so that it can self-tune 
its clock for ``maximum'' frequency. It does this by 
periodically pausing computation for up to 68 cycles, 
during which time it forces extreme inputs (1 and all 1's) 
into the ALU. (The ALU has the longest critical path.) The 
output of the adder is checked: if it is correct, the frequency 
is increased; if incorrect, the frequency is decreased by a 
safety margin, at which time the computation resumes. This 
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scheme takes advantage of some attributes of typical 
delays, but must pause operation to perform its tuning, 
reducing its performance gains. It also assumes that the 
critical (longest) delay path is through the adder, which is 
relatively easy to check; what if the critical path is through 
some other part of the circuitry?  

There has been a large amount of work on asynchronous 
systems. See, for example, [7] for a description of the first 
asynchronous microprocessor and [3] for a brief tutorial on 
modern asynchronous circuit design. Such design 
techniques either use much more hardware than 
synchronous ones (self-timed circuits) or are very hard to 
design (delay matching) [13]. The latter is not helped by the 
dearth of robust design tools for asynchronous systems, 
although work is continuing. Attempts have been made to 
adapt existing synchronous tools for asynchronous system 
use, but with limited success[5]. 

There have been many methods created to improve the 
performance of synchronous circuits. The main approach is 
to retime [6] the registers or latches so as minimize the 
worst case necessary clock period. This is done by a variety 
of methods, including moving the registers or latches in the 
circuit. Software pipelining has been applied to 
synchronous digital circuits to generate optimal clocking 
schemes[1]. However, worst case delays between storage 
elements must still be maintained. 

Multisynchronous systems[4] have also been proposed in 
which the circuitry on a chip is divided into semi-
autonomous modules, each with its own clock. All of the 
clocks have the same frequency, but may be out of phase. 
This addresses part of the worst case timing problem, but 
only at the system level, handling part of the chip clock 
drive problem. 

Wave pipelined arithmetic units have been proposed, but 
have implementation difficulties [2, 9], including the 
inability to easily stall the pipeline, since it depends on 
time-of-flight data storage (like a mercury delay-line). The 
design of such devices is also difficult; it is hard to ensure 
that signals arrive at the same time. 

In one existing method used in some laptop computers, 
the temperature of the processor is measured and fed back 
to control (throttle) the operating frequency. This only 
adjusts for one parameter and usually the frequency is not 
increased above the nominal operating frequency. In [8] a 
control technique is given that does allow the frequency to 
improve. However, it is an open-loop system, errors in any 
form are not explicitly detected, and the temperature and 
voltage changes are only estimated. No prototype was built. 
Our approach subsumes many of the benefits of such 
systems and can take advantage of more of the typically-
valued parameters in a system. 

In [12] a hybrid synchronous/asynchronous system is 
proposed having an on-chip clock generator whose 

frequency tracks changes in operating temperature and 
voltage. Therefore the system is able to partially take 
advantage of typical operating and manufacturing 
conditions. However, it is an open-loop system: errors are 
not detected or modeled; this limits its effectiveness. Its 
approach to the possibility of metastability is to stop its 
clock for an indefinite period; this is not desirable, 
especially in real-time systems. It is also an expensive 
system, requiring specialized clock buffering. No prototype 
was built. 

In prior work we devised a system called 
TIMERRTOL[14] in which timing errors were actually 
detected and tolerated by using two specially-wired copies 
of the pipeline. However, while adapting to existing 
conditions, it was quite expensive, required substantial 
redesign of the target system, and required high fan-in 
comparators, potentially impacting the nominal cycle time. 
This paper greatly improves on TIMERRTOL. 

III. TIMING ERROR AVOIDANCE 

A. Crux of the idea. 
The basic idea of Timing Error Avoidance is to use extra 

logic with the delay of the longest path between pipeline 
registers, or the equivalent, to test on a cycle-by-cycle basis 
whether or not the system Clock is too fast or too slow. 
That is, if a signal applied to the input of the delay test logic 
appears at the output of the test logic within the time of the 
machine�s slowest path, speed up the Clock; or if it is 
greater than that of the critical path delay, minus a safety 
margin, slow down the Clock. Thus, since the delay test 
logic�s characteristics (delay, etc.) mirror those of the main 
logic (they are realized close together on the same chip), 
the system Clock adapts both to dynamic environmental 
conditions, including temperature and operating voltage, as 
well as to statically-varying manufacturing conditions. 

In greater detail, the delay test logic is composed of the 
following design/construction and operation elements; see 
Fig. 1: 

1. Determine the critical path between register 
elements within a digital machine. In the case of 
a pipelined CPU, this means to determine the 
slowest (clock-period determining) stage, and 
the critical (longest, time-wise) path through 
that logic. 

2. Construct a one-bit wide version of that logic in 
which a change at the one-bit version�s input 
from a logic 0-to-1 or a 1-to-0 propagates all the 
way through to the end of the logic. This delay 
test logic is not connected to any of the regular 
logic of the machine. However, the delay test 
logic nominally has the same delay as the worst 
case path through the machine. 
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Fig. 1.  Timing Error Avoidance (TEAtime) block diagram 
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Fig. 2.  Details of the main components of TEAtime circuitry. 

.

3. Drive the delay test logic with alternating 1�s 
and 0�s, the latter synchronized with the system 
Clock. The location of this test input 
corresponds to the output of the beginning 
pipeline register of the slowest pipeline stage in 
a CPU. 

4. At the end of every cycle, if the test data has not 
reached the output register of the pipeline stage 
before the system Clock edge, then the system is 
operating slower than it might, and the system 
Clock frequency is increased. If, however, the 
test data has reached the output register, then 
the system Clock frequency is getting close to 
the system�s limit, and thus the system Clock 
frequency is reduced. 

The basic components of the variable system Clock are 
also shown in Fig. 1. They are standard logic and analog 
elements: an up/down counter to drive the DAC, which in 
turn generates an analog voltage to drive the VCO; hence, 
the counter sets the frequency of the system Clock. (In the 
example system, the counter is always changing, and by at 
most 1, up or down.) With advances in VLSI technology, 
all of these elements should be realizable on the same chip 
as the system. Note that since there is an explicit feedback 
loop from the system Clock to the counter�s setting, the 

absolute value of the counter is not important, only that it 
be able to go up and down with the timing checking 
circuitry�s commands. 

B. Other TEAtime Details 
In order to show the simplicity of the main TEAtime 

circuitry, we provide low-level details of its realization in 
Fig. 2. The alternating 1�s and 0�s are created by a Flip-
Flop wired for toggle operation. The delay test logic (not 
shown) as used in the example system herein consists of a 
one-bit slice through an address multiplexor, the CPU�s 
register file, the bypass multiplexor used for operand 
forwarding in the CPU (to reduce data dependencies), and a 
zero-detecting comparator (across the whole data path 
width). 

The exclusive-OR gate normalizes the delayed signal so 
as to present a signal to the timing checker with the same 
polarity regardless of the output of the toggle flip-flop.  

The delay of the delay test logic is adjusted at system 
design time to be slightly greater than that of the 
aforementioned critical path to give a suitable safety 
margin. This is a relatively simple procedure when a high-
quality logic simulator is used in the design process. In the 
case of our example CPU system a structural simulation 
was performed on the CPU running the test program. From 
this simulation, we obtained both the worst-case operating 
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frequency for a non-TEAtime (baseline) CPU, and checked 
the performance of the TEAtime logic to ensure that the 
system Clock frequency was reduced before the timing 
constraints of the regular CPU logic were violated; hence, 
Timing Error Avoidance was guaranteed. 

C. Possible Metastability in the Timing Checker 
So far so good, everything seems pretty simple and 

straightforward. However, there is one place in the 
TEAtime system as so far described where system failure 
can occur; this is at the start of the Timing Checker, where 
the delayed signal is latched into a flip-flop. Since the 
delayed signal can be positioned anywhere in time, and is 
not synchronized with the system Clock, there is the 
possibility that the delayed test signal could change value at 
the same time as the signal is being latched in the Timing 
Checker. This can result in metastability at the output of the 
timing checker, in which the physical value of the logic 
output signal of the Checker�s flip-flop is neither 0 or 1. It 
is well known that metastable signals can stay in this state 
indefinitely, leading to misinterpretation of the signal�s 
value by the rest of the system�s logic; hence system 
malfunction would ensue.  

Our solution to this problem is shown in the detailed 
Timing Checker design of Fig. 3, with the corresponding 
timing shown in Fig. 4. The basic idea is to sample the 
delay test signal, D1, at two different times. Then, for a 
single cycle, only one of flip-flops Q1 or Q2 can possibly 
be in a metastable state; they cannot both be metastable in 
the same cycle, since D1 only changes value at most once 
in a cycle. The output of the logic looking at Q1 and Q2 to 
determine up or down Clock frequency changing is only 
sampled long after a metastable condition can begin, as 
long as the frequency change increment is kept suitably 
small. The construction of this logic ensures that no 
metastable condition can propagate past the sample point. 
See the timing diagram, Case 3, for an example of the 
handling of a metastable condition. (Cases 1 and 2 show 
more typical frequency increasing and decreasing, 
respectively.) 

We must also point out that the actual connection of the 
clock circuitry is slightly different than shown in the prior 
figures: the VCO actually generates the �Earlier Clock�, 
while the actual system Clock is an output of the clock 
delay chain of the timing checker. 

D. TEAtime Summary and Analysis 
The TEAtime logic is very cheap and conceptually 

straightforward. For a given CPU, say 32 bits, the hardware 
cost of the delay test logic is less than 1/32 of the cost of 
the slowest pipeline stage. The variable frequency oscillator 
adds a little more cost, but this is quite small. 

Should a CPU or other digital system have two or more 
pipeline stages of similar delay, they can all be treated as 
described herein for the single stage case, with a �decrease 
Clock frequency� signal from any of them having priority 

for the setting of the Clock frequency. 
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Fig. 3.  Timing Checker detailed design. 
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Fig. 4.  Timing Checker / TEAtime detailed timing. 

IV. EXPERIMENTAL METHODOLOGY 
Our experimental goals were to realize TEAtime on a 

reasonably complex real digital system (a CPU) to 
demonstrate TEAtime�s functionality, performance and 
adaptability to changing conditions. 

The TEAtime ideas were tested and evaluated on a 32/8 
bit pipelined CPU designed in the mold of that in [11]. 
Three experiments were performed: basic functionality and 
stabilization testing with performance evaluation, and two 
experiments investigating the adaptive abilities of TEAtime 
to temperature changes. 
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Fig. 5.  TEAtime evaluation experimental setup. 

 

A. CPU Aspects 
The CPU has a 32 bit data path to memory and 32-bit 

wide instructions. (It was originally designed in the RISC 
style for use in the URI computer engineering curriculum.) 
An FPGA was used to realize the CPU, its memory, the 
system controller and the TEAtime logic. Mentor Graphics 
and Xilinx CAD tools were used for the design process. 
The internal data paths of the CPU were reduced to 8-bits 
wide to keep the design small and allow for rapid design 
changes. (The instruction width stayed at 32 bits.) The CPU 
employed full register operand forwarding for minimal data 
dependencies 

The test program for the CPU was written to be small 
(about 30 static instructions) so as to fit in the equivalent of 
a small 32 4-byte word cache memory on the FPGA (1 
cycle access time). The function of the test program was to 
go through a small randomized set of positive and negative 
numbers and create two sums: one of the positive numbers 
and one of the negative numbers, with these results stored 
in the externally-accessible cache. While the test program 
was quite small, all of the usual functions were performed, 
including forwards and backwards conditional branching, 
subroutine calling, and logic and arithmetic functions. 

B. The Experimental Equipment and Setup. 
The experiment setup is shown in Fig. 5. The major 

components include the 100,000 gate equivalent Xilinx 
FPGA mounted on the XESS Corporation evaluation board, 
the XESS board itself, additionally containing the Host PC 
interface and the reference oscillator (~25.0 MHz). The 
latter operated at a frequency well below the system Clock 
frequency, and was used to drive the interface and the CPU 
controller, so as to make sure they did not affect the results. 

The reference oscillator was also used to measure the 
system Clock frequency. The reference clock cycles were 
counted during test program execution; since the test 
program ran in a constant 194 system Clock cycles, the 

system Clock frequency was readily computed from the 
reference clock cycle count and its frequency.  

The breadboard was a home-brew affair, containing the 
10-bit DAC and the 25-100 MHz VCO, as well as 
supporting circuitry. The DAC and the VCO were each one 
integrated circuit. (Normally, of course, these would be on 
the same chip as the digital system, but this is not essential.) 

A thermocouple was attached to the center of the top of 
the FPGA with thermal grease, and was used by the 
METEX meter to measure the case temperature of the 
digital system. 

The XESS board and the breadboard were mounted in a 
cavity within the BMA environmental chamber. An 
insulated hole in the chamber side provided access to the 
contained circuitry for the PC and temperature meter. Only 
a fraction of the possible temperature range of the chamber 
was used. Since many of the non-FPGA components in the 
chamber were only specified for operation at ambient 
temperatures between 0 and 70 degrees Celsius, the 
chamber temperature was kept to within 5 and 65 degrees 
Celsius. The chamber used an electric coil for heat and 
Carbon Dioxide gas for cooling. Note that the FPGA is 
specified for a much wider absolute range: a junction, not 
ambient, temperature of 85 degrees maximum with no 
minimum, so our results could be further improved upon. 

The frequency counter was used to precisely measure the 
reference oscillator�s frequency at different temperatures, to 
provide system Clock frequency calculation corrections. 
The counter was also used to validate the on-chip system 
Clock frequency measurements by measuring the system 
Clock frequency directly. (It had no electronic interface so 
could not be used for the actual high speed data gathering.) 

The Host PC ran the experiments with a home-brew 
control program: xstet. xstet  was also used for all of the 
data logging, except for case temperature; the latter 
measurements were logged by a separate program provided 
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with the METEX temperature meter. 

C. Experimental Operation 
A self-explanatory flowchart of the operation of the xstet 

program and hence the experiments is shown in Fig. 6. 
Each pass through the main loop took about 12 
milliseconds, and was primarily due to Host PC/interface 
delays. Once the results from each run of the test program 
were read and checked, the memory results locations were 
overwritten with junk to ensure that the following run 
produced correct results. 

Note that the actual system Clock frequency changing, 
after initialization by the Host, was solely directed and 
caused by the CPU and TEAtime hardware. Also, although 
the system Clock frequency was only changed between test 
program runs, this would not be necessary for a production 
unit with a suitably designed system Clock having no 
glitches during frequency changes. (The latter may be the 
case with our oscillator, but since it was not the point of the 
study, we did not investigate it.) 

V. TEATIME EXPERIMENTS 

A. Experiment 1: Basic Operation and Stabilization 
In this experiment the environmental chamber was not 

used. All of the runs were at room temperature (Tambient = 22 
degrees C.).  

The worst-case operating frequency of the CPU, as 
determined through the structural simulations mentioned 
earlier, was 35.7 MHz (period of 28 ns.). With a design 
safety margin of 20%, this equates to what would be a non-
TEAtime specified operating frequency of about 29.8 MHz 
(period of 33.6 ns.). The latter are our baseline conditions. 

The results of part A of the first experiment are shown in 
Fig. 7. The top subplot shows the value of the up/down 
control line over time; this subplot is horizontally aligned 
with the main subplot below it. It is seen that shortly after 
the starting frequency of about 25 MHz the system Clock 
rises steadily to its final stabilization frequency of about 
45.1 MHz. From a time (period) perspective, this is a 
performance increase of 34.0% over the baseline worst-
case system Clock frequency. The frequency also stabilizes 
rapidly, at a rate of about 8 MHz/sec. Note that in both 
parts of this Experiment all of the data is shown, so 
adjacent data in the plots were adjacent during the 
experiments. 

The main conclusions from this part are that TEAtime 
works and provides a substantial performance gain under 
typical operating conditions. 

While part A represents a normal operating condition, we 
were also curious as to both how high a frequency 
TEAtime could go to, as well as how it would operate 
starting from an elevated frequency. The results of this part, 
part B, are shown in Fig. 8. As is seen from the plot, the 
system Clock frequency can go as high as about 57.3 MHz 
and TEAtime will still continue to function and produce 

correct results. The frequency drops at the same rate it rose 
in part A, and stabilizes at the same frequency as in part A. 

The high possible starting frequency in part B indicates 
both that this realization of TEAtime has a big safety 
margin built into its design, and that the delay test logic 
could possibly be tuned for less delay to get more 
performance and still maintain a good safety margin. 
Considering the performance aspect, if operated at the 57.3 
MHz frequency the TEAtime performance improvement 
would be about 48.1%. As implied earlier, a safety margin 
is still needed, so that that specific performance would not 
actually be realized under these operating conditions. 
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Fig. 6.  Experiment Operation. 
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Fig. 7.  Experiment 1, part A: TEAtime automatically rises to a high frequency and then stabilizes at that point. 
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Fig. 8.  Experiment 1, part B: Decreasing-frequency stabilization. 
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Fig. 9.  Experiment 2: TEAtime gradual temperature change response. Each datum is a run sample taken every 10 seconds; the CPU always runs, however. 
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Fig. 10.  Experiment 3: TEAtime rapid temperature change response. Each datum is a run sample taken every second; the CPU always runs, however. 
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Fig. 11.  System Clock Frequency vs. Case Temperature. Only one datum 
per degree C. is plotted. 

 

B. Experiment 2: Temperature Response-Gradual Change 
In this experiment the ambient temperature was varied 

from 5 degrees C. up to 65 degrees C. and then back down 
to 15 degrees C., in 5 degree steps. Both the system Clock 
frequency and the CPU case temperature were measured as 
the temperature was varied. 

As the results in Fig. 9 show, the system Clock 
frequency tracks the changes in operating temperature 
almost immediately and with no difficulty. Note the change 
in frequency scale from the prior plots; also note the large 
granularity of system Clock frequency change. The latter is 
an artifact of the coarse frequency measuring system 
employed on the chip; the actual frequency steps are finer, 
as can be seen in the prior plots. 

We also note that as expected performance improves 
with lower temperatures. These results also show that 
TEAtime readily adapts the system Clock frequency to 
existing environmental conditions (at least for temperature 
changes). 

(As will be seen from the next plot, the operator�s 
judgment of when the chamber temperature had stabilized 
was not as good as would be desired. However, this does 
not change the conclusions, especially in light of the results 
of Experiment 3.) 

C. Experiment 3: Rapid Temperature Change Response 
In this experiment the chamber temperature setting was 

changed only twice: at time 0 from 25 to 65 degrees C., and 
at about time 1250 seconds from 65 to 5 degrees C. The 
results are shown in Fig. 10. 

In general, the results are about the same as in 
Experiment 2, except that here we also see that TEAtime 
can adapt to quickly changing temperatures, as well, at least 
as fast as 0.1 degree C/second. 

(The two small gaps in the case temperature data were 

due to temporary case temperature-logging malfunctions.) 

D. Frequency versus Temperature 
Lastly, some data from experiments 2 and 3 were 

combined to produce the system Clock frequency vs. case 
temperature plot of Fig. 11. In this plot only one data point 
(a typical value) for each unit temperature value was 
plotted. As the plot shows, there is little or no hysteresis in 
the frequency changes, and the relationship between the 
two variables is approximately linear, as one would expect. 

VI. CONCLUSIONS 
In this paper we have presented a simple and cheap 

technique for improving performance of many, if not all, 
synchronous digital systems. This technique, TEAtime, 
dynamically changes the system�s frequency to enhance 
performance and adapt to the system�s operating 
conditions. If tuned carefully, TEAtime can come close to 
maximizing a system�s performance.  

TEAtime was realized in physical hardware and its 
functionality, performance gains, and adaptability were 
verified.  

We conclude that this is a viable and useful method to be 
used in many if not most digital systems, especially 
embedded systems requiring high performance under 
changing and possibly extreme environmental conditions. 
Further, TEAtime may possibly help to increase 
manufacturing yields, since the system would also be able 
to adapt to static variations in its own construction. 

ACKNOWLEDGEMENT 
We are indebted to Professors Godi Fischer and James 

Daly for the loan of their environmental chamber, and for 
guidance in its use. 

REFERENCES 
[1]  F. Boyer, M. Aboulhamid, Y. Savaria, and I. Bennour, "Optimal 
Design of Synchronous Circuits Using Software Pipelining Techniques," 
in Proceedings of the 1998 International Conference on Computer Design, 
1998. 

[2]  M. J. Flynn, P. Hung, and K. Rudd, "Deep-Submicron Microprocessor 
Design Issues," IEEE MICRO, July-August 1999. 

[3]  S. Furber, "Asynchronous Logic," in IberChip. Sao Paulo, Brazil, 
February 1996. 

[4]  R. Ginosar and R. Kol, "Adaptive Synchronization," in Proceedings of 
the 1998 International Conference on Computer Design, 1998. 

[5]  A. Kondratyev and K. Lwin, "Design of Asynchronous Circuits Using 
Synchronous CAD Tools," IEEE Design and Test of Computers, vol. 19, 
no. 4, pp. 107-117, July/August 2002. 

[6]  C. Leiserson and J. Saxe, "Retiming Synchronous Circuitry," in 
Algorithmica, vol. 1, 1991, pp. 3-35. 

[7]  A. J. Martin, "Design of an Asynchronous Microprocessor," Computer 
Science Department, California Institute of Technology, Pasadena, 
California, Technical Report CS-TR-89-02, 1989. 

 



SSGRR 2003w Conference 
 

 

10

[8]  A. Merchant, B. Melamed, E. Schenfeld, and B. Sengupta, "Analysis 
of a Control Mechanism for a Variable Speed Processor," IEEE 
Transactions on Computers, vol. 45, no. 7, pp. 968-976, July 1996. 

[9]  S. F. Oberman, H. Al-Twaijry, and M. J. Flynn, "The SNAP Project: 
Design of Floating Point Arithmetic Units," in Proceedings of the 13th 
IEEE Symposium on Computer Arithmetic, July 1997. 

[10]  M. Olivieri, A. Trifiletti, and A. De Gloria, "A Low-Power 
Microcontroller with On-Chip Self-Tuning Digital Clock Generator for 
Variable-Load Applications," in Proceedings of the 1999 International 
Conference on Computer Design: IEEE, 1999. 

[11]  D. A. Patterson and J. L. Hennessy, Computer Architecture: A 
Quantitative Approach, First ed. San Mateo, California: Morgan Kaufman 
Publishers, Inc., 1990. 

[12]  A. E. Sjogren and C. J. Myers, "Interfacing Synchronous and 
Asynchronous Modules Within a  High-Speed Pipeline," in Proceedings of 
the 17th Conference on Advanced Research in VLSI (ARVLSI '97), 1997, 
pp. 47-61. 

[13]  I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 
32, no. 6, pp. 720-738, June 1989. 

[14]  A. K. Uht, "Achieving Typical Delays in Synchronous Systems via 
Timing Error Toleration," Department of Electrical and Computer 
Engineering, University of Rhode Island, Kingston, RI, Technical Report 
032000-0100, March 10, 2000. Available via http://www.ele.uri.edu/~uht. 
 

http://www.ele.uri.edu/~uht

	Introduction and Background
	Related Work
	Timing Error Avoidance
	Crux of the idea.
	Other TEAtime Details
	Possible Metastability in the Timing Checker
	TEAtime Summary and Analysis

	Experimental Methodology
	CPU Aspects
	The Experimental Equipment and Setup.
	Experimental Operation

	TEAtime Experiments
	Experiment 1: Basic Operation and Stabilization
	Experiment 2: Temperature Response-Gradual Change
	Experiment 3: Rapid Temperature Change Response
	Frequency versus Temperature

	Conclusions

