
SSGRR 2003w Conference

1

Uniprocessor Performance Enhancement
Through Adaptive Clock Frequency Control

Augustus K. Uht

1
Abstract� Uniprocessor designs have always assumed

worst-case operating conditions to set the operating clock
frequency, and hence performance. However, much more
performance can be obtained under typical operating
conditions through experimentation; but such increased
frequency operation is subject to the possibility of system
failure and hence data loss/corruption. Further, mobile CPU's
such as those in cell phones/internet browsers do not adapt to
their current surroundings (varying temperature conditions,
etc.) so as to increase or decrease operating frequency to
maximize performance and/or allow operation under extreme
conditions.

 We present a digital hardware design technique realizing
adaptive clock-frequency performance-enhancing digital
hardware; the technique can be tuned to approximate
performance maximization. The cost is low, and the design is
straightforward. Experiments are presented evaluating such a
design in a pipelined uniprocessor realized in a Field
Programmable Gate Array (FPGA).

Index Terms� Adaptive clock design, computer design,
microarchitecture, high-performance computing.

I. INTRODUCTION AND BACKGROUND

EVER since synchronous digital systems were first
proposed, it has been necessary to make the operating

frequency of a system much less than necessary in typical
situations to ensure that the system operates correctly
assuming worst case conditions, both operating and
manufacturing. The basic clock period of the system is
padded with a guard band of extra time to cover extreme
conditions. There are three sources of time variation
requiring the guard band. First, the manufacturing process
has variations which can lead to devices having greater
delay than the norm. Second, adverse operating conditions
such as temperature and humidity extremes can lead to
greater device delays. Lastly, one must allow for the data
applied to the system to take the worst delay path through
the logic.

However, none of these extremes is likely to be present

in typical operating conditions. The only known method to
still obtain typical delays in all cases is to change the basic
model to an asynchronous model of operation[3]. But this
is undesirable: asynchronous systems are notoriously hard
to design, and there are few automated design aids available
for asynchronous systems.

This paper proposes a Timing Error Avoidance technique
(TEAtime) to realize typical delays using standard
synchronous design methodologies. The extra cost is very
small, while the performance gains are substantial. The
technique is applicable to any synchronous digital system.
Correct results are ensured if the design guidelines are
followed. Neither the base cycle time or the cycle count are
affected by TEAtime. It is also easy to modify current
designs to take advantage of TEAtime.

In order to demonstrate TEAtime�s capabilities and
correct operation, we implemented a simple CPU and
memory on a Xilinx FPGA (Field Programmable Gate
Array) and ran it under various operating conditions. Over
a wide range of temperatures TEAtime demonstrated
performance improvements of about 34% over the baseline
machine�s worst case specified performance. TEAtime
adapted automatically to changing conditions, always
stabilizing to a steady operating clock frequency.

The remainder of this paper is organized as follows.
Related work is reviewed in Section II. In Section III the
basic ideas of timing error avoidance are presented, using
our test CPU as a case study. Our experimental
methodology is described in Section IV, with the
experimental results presented in Section V. We conclude
in Section VI.

II. RELATED WORK
There has been prior work somewhat similar to ours, but

nothing that encompasses all of the attributes of our
technique, not to mention actually demonstrating its
functioning and characteristics with a real prototype. The
closest work we are aware of is [10]. In this work a
microcontroller has been modified so that it can self-tune
its clock for ``maximum'' frequency. It does this by
periodically pausing computation for up to 68 cycles,
during which time it forces extreme inputs (1 and all 1's)
into the ALU. (The ALU has the longest critical path.) The
output of the adder is checked: if it is correct, the frequency
is increased; if incorrect, the frequency is decreased by a
safety margin, at which time the computation resumes. This

This work was supported in part by the U.S. National Science

Foundation under Grants Nos. MIP-9708183, DUE-9751215 and EIA-
9729839, the University of Rhode Island Office of the Provost, the Xilinx
Corp., and the Mentor Graphics Corp. Patent applied for.

Augustus K. Uht is with the University of Rhode Island, Department of
Electrical and Computer Engineering, 4 East Alumni Ave., Kingston, RI
02881 USA (telephone: +1-401-874-5431, e-mail:
mailto:uht@ele.uri.edu).

mailto:uht@ele.uri.edu

SSGRR 2003w Conference

2

scheme takes advantage of some attributes of typical
delays, but must pause operation to perform its tuning,
reducing its performance gains. It also assumes that the
critical (longest) delay path is through the adder, which is
relatively easy to check; what if the critical path is through
some other part of the circuitry?

There has been a large amount of work on asynchronous
systems. See, for example, [7] for a description of the first
asynchronous microprocessor and [3] for a brief tutorial on
modern asynchronous circuit design. Such design
techniques either use much more hardware than
synchronous ones (self-timed circuits) or are very hard to
design (delay matching) [13]. The latter is not helped by the
dearth of robust design tools for asynchronous systems,
although work is continuing. Attempts have been made to
adapt existing synchronous tools for asynchronous system
use, but with limited success[5].

There have been many methods created to improve the
performance of synchronous circuits. The main approach is
to retime [6] the registers or latches so as minimize the
worst case necessary clock period. This is done by a variety
of methods, including moving the registers or latches in the
circuit. Software pipelining has been applied to
synchronous digital circuits to generate optimal clocking
schemes[1]. However, worst case delays between storage
elements must still be maintained.

Multisynchronous systems[4] have also been proposed in
which the circuitry on a chip is divided into semi-
autonomous modules, each with its own clock. All of the
clocks have the same frequency, but may be out of phase.
This addresses part of the worst case timing problem, but
only at the system level, handling part of the chip clock
drive problem.

Wave pipelined arithmetic units have been proposed, but
have implementation difficulties [2, 9], including the
inability to easily stall the pipeline, since it depends on
time-of-flight data storage (like a mercury delay-line). The
design of such devices is also difficult; it is hard to ensure
that signals arrive at the same time.

In one existing method used in some laptop computers,
the temperature of the processor is measured and fed back
to control (throttle) the operating frequency. This only
adjusts for one parameter and usually the frequency is not
increased above the nominal operating frequency. In [8] a
control technique is given that does allow the frequency to
improve. However, it is an open-loop system, errors in any
form are not explicitly detected, and the temperature and
voltage changes are only estimated. No prototype was built.
Our approach subsumes many of the benefits of such
systems and can take advantage of more of the typically-
valued parameters in a system.

In [12] a hybrid synchronous/asynchronous system is
proposed having an on-chip clock generator whose

frequency tracks changes in operating temperature and
voltage. Therefore the system is able to partially take
advantage of typical operating and manufacturing
conditions. However, it is an open-loop system: errors are
not detected or modeled; this limits its effectiveness. Its
approach to the possibility of metastability is to stop its
clock for an indefinite period; this is not desirable,
especially in real-time systems. It is also an expensive
system, requiring specialized clock buffering. No prototype
was built.

In prior work we devised a system called
TIMERRTOL[14] in which timing errors were actually
detected and tolerated by using two specially-wired copies
of the pipeline. However, while adapting to existing
conditions, it was quite expensive, required substantial
redesign of the target system, and required high fan-in
comparators, potentially impacting the nominal cycle time.
This paper greatly improves on TIMERRTOL.

III. TIMING ERROR AVOIDANCE

A. Crux of the idea.
The basic idea of Timing Error Avoidance is to use extra

logic with the delay of the longest path between pipeline
registers, or the equivalent, to test on a cycle-by-cycle basis
whether or not the system Clock is too fast or too slow.
That is, if a signal applied to the input of the delay test logic
appears at the output of the test logic within the time of the
machine�s slowest path, speed up the Clock; or if it is
greater than that of the critical path delay, minus a safety
margin, slow down the Clock. Thus, since the delay test
logic�s characteristics (delay, etc.) mirror those of the main
logic (they are realized close together on the same chip),
the system Clock adapts both to dynamic environmental
conditions, including temperature and operating voltage, as
well as to statically-varying manufacturing conditions.

In greater detail, the delay test logic is composed of the
following design/construction and operation elements; see
Fig. 1:

1. Determine the critical path between register
elements within a digital machine. In the case of
a pipelined CPU, this means to determine the
slowest (clock-period determining) stage, and
the critical (longest, time-wise) path through
that logic.

2. Construct a one-bit wide version of that logic in
which a change at the one-bit version�s input
from a logic 0-to-1 or a 1-to-0 propagates all the
way through to the end of the logic. This delay
test logic is not connected to any of the regular
logic of the machine. However, the delay test
logic nominally has the same delay as the worst
case path through the machine.

SSGRR 2003w Conference

3

Pipe
register

n

Pipe
register

n+1

Combinational
Logic

x

Counterup/down

DAC

0, 1
alter-
nator

Timing
Checker

VCO

system Clock

Delay: ~Combinational
 Logic delay1 1

NOTES: - , >> 1 ; - DAC: Digital-to-Analog Convertor ; - VCO: Voltage-Controlled Oscillator.w x

new hardware for TEAtime

w

original system (CPU)

Fig. 1. Timing Error Avoidance (TEAtime) block diagram

0, 1
alter-
nator

Timing
Checker

system Clock

1 1

D

Delay:
mimics 1-bit wide version
of Combinational Logic

up/
down

D1

Fig. 2. Details of the main components of TEAtime circuitry.

.

3. Drive the delay test logic with alternating 1�s
and 0�s, the latter synchronized with the system
Clock. The location of this test input
corresponds to the output of the beginning
pipeline register of the slowest pipeline stage in
a CPU.

4. At the end of every cycle, if the test data has not
reached the output register of the pipeline stage
before the system Clock edge, then the system is
operating slower than it might, and the system
Clock frequency is increased. If, however, the
test data has reached the output register, then
the system Clock frequency is getting close to
the system�s limit, and thus the system Clock
frequency is reduced.

The basic components of the variable system Clock are
also shown in Fig. 1. They are standard logic and analog
elements: an up/down counter to drive the DAC, which in
turn generates an analog voltage to drive the VCO; hence,
the counter sets the frequency of the system Clock. (In the
example system, the counter is always changing, and by at
most 1, up or down.) With advances in VLSI technology,
all of these elements should be realizable on the same chip
as the system. Note that since there is an explicit feedback
loop from the system Clock to the counter�s setting, the

absolute value of the counter is not important, only that it
be able to go up and down with the timing checking
circuitry�s commands.

B. Other TEAtime Details
In order to show the simplicity of the main TEAtime

circuitry, we provide low-level details of its realization in
Fig. 2. The alternating 1�s and 0�s are created by a Flip-
Flop wired for toggle operation. The delay test logic (not
shown) as used in the example system herein consists of a
one-bit slice through an address multiplexor, the CPU�s
register file, the bypass multiplexor used for operand
forwarding in the CPU (to reduce data dependencies), and a
zero-detecting comparator (across the whole data path
width).

The exclusive-OR gate normalizes the delayed signal so
as to present a signal to the timing checker with the same
polarity regardless of the output of the toggle flip-flop.

The delay of the delay test logic is adjusted at system
design time to be slightly greater than that of the
aforementioned critical path to give a suitable safety
margin. This is a relatively simple procedure when a high-
quality logic simulator is used in the design process. In the
case of our example CPU system a structural simulation
was performed on the CPU running the test program. From
this simulation, we obtained both the worst-case operating

SSGRR 2003w Conference

4

frequency for a non-TEAtime (baseline) CPU, and checked
the performance of the TEAtime logic to ensure that the
system Clock frequency was reduced before the timing
constraints of the regular CPU logic were violated; hence,
Timing Error Avoidance was guaranteed.

C. Possible Metastability in the Timing Checker
So far so good, everything seems pretty simple and

straightforward. However, there is one place in the
TEAtime system as so far described where system failure
can occur; this is at the start of the Timing Checker, where
the delayed signal is latched into a flip-flop. Since the
delayed signal can be positioned anywhere in time, and is
not synchronized with the system Clock, there is the
possibility that the delayed test signal could change value at
the same time as the signal is being latched in the Timing
Checker. This can result in metastability at the output of the
timing checker, in which the physical value of the logic
output signal of the Checker�s flip-flop is neither 0 or 1. It
is well known that metastable signals can stay in this state
indefinitely, leading to misinterpretation of the signal�s
value by the rest of the system�s logic; hence system
malfunction would ensue.

Our solution to this problem is shown in the detailed
Timing Checker design of Fig. 3, with the corresponding
timing shown in Fig. 4. The basic idea is to sample the
delay test signal, D1, at two different times. Then, for a
single cycle, only one of flip-flops Q1 or Q2 can possibly
be in a metastable state; they cannot both be metastable in
the same cycle, since D1 only changes value at most once
in a cycle. The output of the logic looking at Q1 and Q2 to
determine up or down Clock frequency changing is only
sampled long after a metastable condition can begin, as
long as the frequency change increment is kept suitably
small. The construction of this logic ensures that no
metastable condition can propagate past the sample point.
See the timing diagram, Case 3, for an example of the
handling of a metastable condition. (Cases 1 and 2 show
more typical frequency increasing and decreasing,
respectively.)

We must also point out that the actual connection of the
clock circuitry is slightly different than shown in the prior
figures: the VCO actually generates the �Earlier Clock�,
while the actual system Clock is an output of the clock
delay chain of the timing checker.

D. TEAtime Summary and Analysis
The TEAtime logic is very cheap and conceptually

straightforward. For a given CPU, say 32 bits, the hardware
cost of the delay test logic is less than 1/32 of the cost of
the slowest pipeline stage. The variable frequency oscillator
adds a little more cost, but this is quite small.

Should a CPU or other digital system have two or more
pipeline stages of similar delay, they can all be treated as
described herein for the single stage case, with a �decrease
Clock frequency� signal from any of them having priority

for the setting of the Clock frequency.

D D

~1 gate delay

D1
-from
XOR
gate

early
Clock

system
Clock

-from
VCO

Decrease
frequency
(/down)up

+ =

~1 gate delay

D

earlier
Clock

Fig. 3. Timing Checker detailed design.

Decrease Frequency (/down) = up +

~one
gate delay

~one
gate delay

one clock cycle

system Clock

early Clock

earlier Clock

D1

up/down

D1

up/down

D1

up/down

metastable state

C
as

e
1:

 I
nc

re
as

e
Fr

eq
.

C
as

e
3:

 D
ec

re
as

e
Fr

eq
.

(m
et

as
ta

bl
e

st
at

e)
C

as
e

2:
 D

ec
re

as
e

Fr
eq

.

Fig. 4. Timing Checker / TEAtime detailed timing.

IV. EXPERIMENTAL METHODOLOGY
Our experimental goals were to realize TEAtime on a

reasonably complex real digital system (a CPU) to
demonstrate TEAtime�s functionality, performance and
adaptability to changing conditions.

The TEAtime ideas were tested and evaluated on a 32/8
bit pipelined CPU designed in the mold of that in [11].
Three experiments were performed: basic functionality and
stabilization testing with performance evaluation, and two
experiments investigating the adaptive abilities of TEAtime
to temperature changes.

SSGRR 2003w Conference

5

Host - Wintel PC BMA Environmental Chamber

- manual temperature setting

Cavity

C
ar

bo
n

D
io

xi
de

 -
 f

or
 c

oo
li

ng

DAC VCO

breadboard

XESS XSA-100 Board

Xilinx
Spartan II
XC2S100

FPGA

Xface

ref.
osc.

Metex
temp.
meter

Heathkit frequency counter

Scopeview

temperature
data logging

hardware
control &
general

data logging

xstet

thermocouple
for FPGA case

45.312345 Mhz

oC0028

Fig. 5. TEAtime evaluation experimental setup.

A. CPU Aspects
The CPU has a 32 bit data path to memory and 32-bit

wide instructions. (It was originally designed in the RISC
style for use in the URI computer engineering curriculum.)
An FPGA was used to realize the CPU, its memory, the
system controller and the TEAtime logic. Mentor Graphics
and Xilinx CAD tools were used for the design process.
The internal data paths of the CPU were reduced to 8-bits
wide to keep the design small and allow for rapid design
changes. (The instruction width stayed at 32 bits.) The CPU
employed full register operand forwarding for minimal data
dependencies

The test program for the CPU was written to be small
(about 30 static instructions) so as to fit in the equivalent of
a small 32 4-byte word cache memory on the FPGA (1
cycle access time). The function of the test program was to
go through a small randomized set of positive and negative
numbers and create two sums: one of the positive numbers
and one of the negative numbers, with these results stored
in the externally-accessible cache. While the test program
was quite small, all of the usual functions were performed,
including forwards and backwards conditional branching,
subroutine calling, and logic and arithmetic functions.

B. The Experimental Equipment and Setup.
The experiment setup is shown in Fig. 5. The major

components include the 100,000 gate equivalent Xilinx
FPGA mounted on the XESS Corporation evaluation board,
the XESS board itself, additionally containing the Host PC
interface and the reference oscillator (~25.0 MHz). The
latter operated at a frequency well below the system Clock
frequency, and was used to drive the interface and the CPU
controller, so as to make sure they did not affect the results.

The reference oscillator was also used to measure the
system Clock frequency. The reference clock cycles were
counted during test program execution; since the test
program ran in a constant 194 system Clock cycles, the

system Clock frequency was readily computed from the
reference clock cycle count and its frequency.

The breadboard was a home-brew affair, containing the
10-bit DAC and the 25-100 MHz VCO, as well as
supporting circuitry. The DAC and the VCO were each one
integrated circuit. (Normally, of course, these would be on
the same chip as the digital system, but this is not essential.)

A thermocouple was attached to the center of the top of
the FPGA with thermal grease, and was used by the
METEX meter to measure the case temperature of the
digital system.

The XESS board and the breadboard were mounted in a
cavity within the BMA environmental chamber. An
insulated hole in the chamber side provided access to the
contained circuitry for the PC and temperature meter. Only
a fraction of the possible temperature range of the chamber
was used. Since many of the non-FPGA components in the
chamber were only specified for operation at ambient
temperatures between 0 and 70 degrees Celsius, the
chamber temperature was kept to within 5 and 65 degrees
Celsius. The chamber used an electric coil for heat and
Carbon Dioxide gas for cooling. Note that the FPGA is
specified for a much wider absolute range: a junction, not
ambient, temperature of 85 degrees maximum with no
minimum, so our results could be further improved upon.

The frequency counter was used to precisely measure the
reference oscillator�s frequency at different temperatures, to
provide system Clock frequency calculation corrections.
The counter was also used to validate the on-chip system
Clock frequency measurements by measuring the system
Clock frequency directly. (It had no electronic interface so
could not be used for the actual high speed data gathering.)

The Host PC ran the experiments with a home-brew
control program: xstet. xstet was also used for all of the
data logging, except for case temperature; the latter
measurements were logged by a separate program provided

SSGRR 2003w Conference

6

with the METEX temperature meter.

C. Experimental Operation
A self-explanatory flowchart of the operation of the xstet

program and hence the experiments is shown in Fig. 6.
Each pass through the main loop took about 12
milliseconds, and was primarily due to Host PC/interface
delays. Once the results from each run of the test program
were read and checked, the memory results locations were
overwritten with junk to ensure that the following run
produced correct results.

Note that the actual system Clock frequency changing,
after initialization by the Host, was solely directed and
caused by the CPU and TEAtime hardware. Also, although
the system Clock frequency was only changed between test
program runs, this would not be necessary for a production
unit with a suitably designed system Clock having no
glitches during frequency changes. (The latter may be the
case with our oscillator, but since it was not the point of the
study, we did not investigate it.)

V. TEATIME EXPERIMENTS

A. Experiment 1: Basic Operation and Stabilization
In this experiment the environmental chamber was not

used. All of the runs were at room temperature (Tambient = 22
degrees C.).

The worst-case operating frequency of the CPU, as
determined through the structural simulations mentioned
earlier, was 35.7 MHz (period of 28 ns.). With a design
safety margin of 20%, this equates to what would be a non-
TEAtime specified operating frequency of about 29.8 MHz
(period of 33.6 ns.). The latter are our baseline conditions.

The results of part A of the first experiment are shown in
Fig. 7. The top subplot shows the value of the up/down
control line over time; this subplot is horizontally aligned
with the main subplot below it. It is seen that shortly after
the starting frequency of about 25 MHz the system Clock
rises steadily to its final stabilization frequency of about
45.1 MHz. From a time (period) perspective, this is a
performance increase of 34.0% over the baseline worst-
case system Clock frequency. The frequency also stabilizes
rapidly, at a rate of about 8 MHz/sec. Note that in both
parts of this Experiment all of the data is shown, so
adjacent data in the plots were adjacent during the
experiments.

The main conclusions from this part are that TEAtime
works and provides a substantial performance gain under
typical operating conditions.

While part A represents a normal operating condition, we
were also curious as to both how high a frequency
TEAtime could go to, as well as how it would operate
starting from an elevated frequency. The results of this part,
part B, are shown in Fig. 8. As is seen from the plot, the
system Clock frequency can go as high as about 57.3 MHz
and TEAtime will still continue to function and produce

correct results. The frequency drops at the same rate it rose
in part A, and stabilizes at the same frequency as in part A.

The high possible starting frequency in part B indicates
both that this realization of TEAtime has a big safety
margin built into its design, and that the delay test logic
could possibly be tuned for less delay to get more
performance and still maintain a good safety margin.
Considering the performance aspect, if operated at the 57.3
MHz frequency the TEAtime performance improvement
would be about 48.1%. As implied earlier, a safety margin
is still needed, so that that specific performance would not
actually be realized under these operating conditions.

Host (PC) UUT (Unit Under
Test) - CPU

Start
(xstet)

load CPU design
into FPGA

load CPU program

initialize Clock frequency

reset system

start CPU

done?

check program results
for correctness

reset program results
in CPU memory to

incorrect values

get Clock frequency
measurement data

configure FPGA

.. into memory

controller

CPU, controller

CPU executes program

program ends
done

adjust Clock frequency

...from memory

...to memory

controller

end of experiment?
N

N
Y

Y

Stop

Fig. 6. Experiment Operation.

SSGRR 2003w Conference

7

0

50

100

150

200

250

300

350

400

450

500

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time (seconds)

D
A

C
 in

pu
t (

ou
t o

f 1
0-

bi
t r

an
ge

)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

DAC input
Clock Freq.

0

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

In
cr

ea
se

/
D

ec
re

as
e

Fr
eq

ue
nc

y

Fig. 7. Experiment 1, part A: TEAtime automatically rises to a high frequency and then stabilizes at that point.

0

100

200

300

400

500

600

0.0 0.5 1.0 1.5

Time (seconds)

D
A

C
 in

pu
t (

ou
t o

f 1
0-

bi
t r

an
ge

)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

DAC input
Clock Freq.

0

1

Time (sec.)

In
cr

ea
se

/
D

ec
re

as
e

Fr
eq

ue
nc

y

Fig. 8. Experiment 1, part B: Decreasing-frequency stabilization.

SSGRR 2003w Conference

8

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

si
us

)

40.0

41.0

42.0

43.0

44.0

45.0

46.0

47.0

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Chamber Temp. Setting
Case Temp. (Measured)
Clock Freq.

0

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

In
cr

ea
se

/
D

ec
re

as
e

Fr
eq

ue
nc

y

Fig. 9. Experiment 2: TEAtime gradual temperature change response. Each datum is a run sample taken every 10 seconds; the CPU always runs, however.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800

Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
es

 C
el

si
us

)

39.0

40.0

41.0

42.0

43.0

44.0

45.0

46.0

47.0
C

lo
ck

 F
re

qu
en

cy
 (M

H
z)

Case Temp. (measured)
Chamber Temp. Setting
Clock Freq.

0

1

0 200 400 600 800 1000 1200 1400 1600 1800

In
cr

ea
se

/
D

ec
re

as
e

Fr
eq

ue
nc

y

Fig. 10. Experiment 3: TEAtime rapid temperature change response. Each datum is a run sample taken every second; the CPU always runs, however.

SSGRR 2003w Conference

9

40.0

41.0

42.0

43.0

44.0

45.0

46.0

47.0

0 10 20 30 40 50 60 70

Case Temperature (Measured) (degrees Celsius)

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Increasing Temp. with
time
Decreasing Temp.with
time

Fig. 11. System Clock Frequency vs. Case Temperature. Only one datum
per degree C. is plotted.

B. Experiment 2: Temperature Response-Gradual Change
In this experiment the ambient temperature was varied

from 5 degrees C. up to 65 degrees C. and then back down
to 15 degrees C., in 5 degree steps. Both the system Clock
frequency and the CPU case temperature were measured as
the temperature was varied.

As the results in Fig. 9 show, the system Clock
frequency tracks the changes in operating temperature
almost immediately and with no difficulty. Note the change
in frequency scale from the prior plots; also note the large
granularity of system Clock frequency change. The latter is
an artifact of the coarse frequency measuring system
employed on the chip; the actual frequency steps are finer,
as can be seen in the prior plots.

We also note that as expected performance improves
with lower temperatures. These results also show that
TEAtime readily adapts the system Clock frequency to
existing environmental conditions (at least for temperature
changes).

(As will be seen from the next plot, the operator�s
judgment of when the chamber temperature had stabilized
was not as good as would be desired. However, this does
not change the conclusions, especially in light of the results
of Experiment 3.)

C. Experiment 3: Rapid Temperature Change Response
In this experiment the chamber temperature setting was

changed only twice: at time 0 from 25 to 65 degrees C., and
at about time 1250 seconds from 65 to 5 degrees C. The
results are shown in Fig. 10.

In general, the results are about the same as in
Experiment 2, except that here we also see that TEAtime
can adapt to quickly changing temperatures, as well, at least
as fast as 0.1 degree C/second.

(The two small gaps in the case temperature data were

due to temporary case temperature-logging malfunctions.)

D. Frequency versus Temperature
Lastly, some data from experiments 2 and 3 were

combined to produce the system Clock frequency vs. case
temperature plot of Fig. 11. In this plot only one data point
(a typical value) for each unit temperature value was
plotted. As the plot shows, there is little or no hysteresis in
the frequency changes, and the relationship between the
two variables is approximately linear, as one would expect.

VI. CONCLUSIONS
In this paper we have presented a simple and cheap

technique for improving performance of many, if not all,
synchronous digital systems. This technique, TEAtime,
dynamically changes the system�s frequency to enhance
performance and adapt to the system�s operating
conditions. If tuned carefully, TEAtime can come close to
maximizing a system�s performance.

TEAtime was realized in physical hardware and its
functionality, performance gains, and adaptability were
verified.

We conclude that this is a viable and useful method to be
used in many if not most digital systems, especially
embedded systems requiring high performance under
changing and possibly extreme environmental conditions.
Further, TEAtime may possibly help to increase
manufacturing yields, since the system would also be able
to adapt to static variations in its own construction.

ACKNOWLEDGEMENT
We are indebted to Professors Godi Fischer and James

Daly for the loan of their environmental chamber, and for
guidance in its use.

REFERENCES
[1] F. Boyer, M. Aboulhamid, Y. Savaria, and I. Bennour, "Optimal
Design of Synchronous Circuits Using Software Pipelining Techniques,"
in Proceedings of the 1998 International Conference on Computer Design,
1998.

[2] M. J. Flynn, P. Hung, and K. Rudd, "Deep-Submicron Microprocessor
Design Issues," IEEE MICRO, July-August 1999.

[3] S. Furber, "Asynchronous Logic," in IberChip. Sao Paulo, Brazil,
February 1996.

[4] R. Ginosar and R. Kol, "Adaptive Synchronization," in Proceedings of
the 1998 International Conference on Computer Design, 1998.

[5] A. Kondratyev and K. Lwin, "Design of Asynchronous Circuits Using
Synchronous CAD Tools," IEEE Design and Test of Computers, vol. 19,
no. 4, pp. 107-117, July/August 2002.

[6] C. Leiserson and J. Saxe, "Retiming Synchronous Circuitry," in
Algorithmica, vol. 1, 1991, pp. 3-35.

[7] A. J. Martin, "Design of an Asynchronous Microprocessor," Computer
Science Department, California Institute of Technology, Pasadena,
California, Technical Report CS-TR-89-02, 1989.

SSGRR 2003w Conference

10

[8] A. Merchant, B. Melamed, E. Schenfeld, and B. Sengupta, "Analysis
of a Control Mechanism for a Variable Speed Processor," IEEE
Transactions on Computers, vol. 45, no. 7, pp. 968-976, July 1996.

[9] S. F. Oberman, H. Al-Twaijry, and M. J. Flynn, "The SNAP Project:
Design of Floating Point Arithmetic Units," in Proceedings of the 13th
IEEE Symposium on Computer Arithmetic, July 1997.

[10] M. Olivieri, A. Trifiletti, and A. De Gloria, "A Low-Power
Microcontroller with On-Chip Self-Tuning Digital Clock Generator for
Variable-Load Applications," in Proceedings of the 1999 International
Conference on Computer Design: IEEE, 1999.

[11] D. A. Patterson and J. L. Hennessy, Computer Architecture: A
Quantitative Approach, First ed. San Mateo, California: Morgan Kaufman
Publishers, Inc., 1990.

[12] A. E. Sjogren and C. J. Myers, "Interfacing Synchronous and
Asynchronous Modules Within a High-Speed Pipeline," in Proceedings of
the 17th Conference on Advanced Research in VLSI (ARVLSI '97), 1997,
pp. 47-61.

[13] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol.
32, no. 6, pp. 720-738, June 1989.

[14] A. K. Uht, "Achieving Typical Delays in Synchronous Systems via
Timing Error Toleration," Department of Electrical and Computer
Engineering, University of Rhode Island, Kingston, RI, Technical Report
032000-0100, March 10, 2000. Available via http://www.ele.uri.edu/~uht.

http://www.ele.uri.edu/~uht

	Introduction and Background
	Related Work
	Timing Error Avoidance
	Crux of the idea.
	Other TEAtime Details
	Possible Metastability in the Timing Checker
	TEAtime Summary and Analysis

	Experimental Methodology
	CPU Aspects
	The Experimental Equipment and Setup.
	Experimental Operation

	TEAtime Experiments
	Experiment 1: Basic Operation and Stabilization
	Experiment 2: Temperature Response-Gradual Change
	Experiment 3: Rapid Temperature Change Response
	Frequency versus Temperature

	Conclusions

